2.W miejsca kropek wstaw znak ,= a) 1-Pierwiastek z 2.0 b) 3- 2 Pierwiastki z 2..0 c) (1 - Pierwiastek z 2) do potęgi 2 + (Pierwiastek z 2 - 1) do potęgi 2..0 3.Daną liczbę przedstaw jako iloczyć dwóch liczb, z których jedna jest kwadratem liczby naturalnej( i opis jak zrobiliście) 20,45,128,242,175,117,396,245,288,675 4 W poprzednich częściach zajmowaliśmy się potęgowaniem i pierwiastkowaniem liczb. Teraz, dzięki umiejętności zapisywania pierwiastka za pomocą potęgi, połączymy oba te działania. W jaki sposób? Na początku spójrz na przykład. Weźmy liczbę $(\sqrt{16})^{2}$. Chcemy ją jakoś policzyć. Jak? Są na to 2 sposoby: Sposób I. Korzystając z własności pierwiastków: $$(\sqrt{16})^{2}=\sqrt{16}\cdot\sqrt{16} = \sqrt{16\cdot16} = \sqrt{256}= 16$$ Ten mechanizm był wytłumaczony tutaj i tutaj. Sposób II. Zamieniamy liczbę $\sqrt{16}$ na potęgę o wykładniku wymiernym, tzn.: $$(\sqrt{16})^{2} = \left(16^{\frac{1}{2}}\right)^2=16^{\frac{1}{2}\cdot 2} = 16$$ Konstrukcja $(\sqrt{a})^{2}$ często pojawia się w różnych zadaniach, zapamiętaj więc, że $(\sqrt{a})^{2}=a$. Zachodzi to również dla wyższych pierwiastków i potęg, np. $(\sqrt[3]{a})^{3}=a$, $~(\sqrt[4]{a})^{4}=a$, należy pamiętać jednak o tym, żeby stopień pierwiastka był równy wykładnikowi potęgi. Przykłady. $$(4\sqrt{2})^{2}\stackrel{\text{I}}{=} (\sqrt{16\cdot2})^{2} = (\sqrt{32})^{2} = 32$$ $$(4\sqrt{2})^{2}= 4^{2}\cdot(\sqrt{2})^{2} \stackrel{\text{II}}{=} 16\cdot2 = 32$$ $$(\sqrt{7})^{3}\stackrel{\text{I}}{=} \sqrt{7\cdot7\cdot7} = \sqrt{7^{2}}\cdot\sqrt{7} = 7\sqrt{7}$$ Zadania Zadanie 1. Liczba $\sqrt[3]{3\sqrt{3}}$ jest równa $$A. \sqrt[6]{3},~~B. \sqrt[4]{3},~~C. \sqrt[3]{3},~~ D. \sqrt{3}$$ Korzystając ze wzorów na działaniach na potęgach i pierwiastkach mamy: $$\sqrt[3]{3\sqrt{3}} = \sqrt[3]{3\cdot3^{\frac{1}{2}}}=\sqrt[3]{3^{1+\frac{1}{2}}}=\sqrt[3]{3^\frac{3}{2}}=\left(3^{\frac{3}{2}}\right)^{\frac{1}{3}}=3^{\frac{3}{2}\cdot\frac{1}{3}}=3^{\frac{1}{2}}=\sqrt{3}$$ Odpowiedź: D. Zadanie 2. Liczba $3^{\frac{8}{3}}\cdot\sqrt[3]{9^{2}}$ jest równa $$A. 3^{3},~~B. 3^{\frac{32}{9}},~~C. 3^{4},~~ D. 3^{5}$$ $$3^{\frac{8}{3}}\cdot\sqrt[3]{9^{2}}=3^{\frac{8}{3}}\cdot\sqrt[3]{(3^{2})^{2}}=3^{\frac{8}{3}}\cdot\sqrt[3]{3^{4}}=3^{\frac{8}{3}}\cdot3^{\frac{4}{3}}=3^{\frac{8+4}{3}}=3^{\frac{12}{3}}=3^{4}$$ Odpowiedź: C. Zadanie 3. Liczba $7^{\frac{4}{3}}\cdot\sqrt[3]{7^{5}}$ jest równa $$A. 7^{\frac{4}{5}},~~B. 7^{3},~~C. 7^{\frac{20}{9}},~~ D. 7^{2}$$ $$7^{\frac{4}{3}}\cdot\sqrt[3]{7^{5}}=7^{\frac{4}{3}}\cdot7^{\frac{5}{3}}=7^{\frac{4+5}{3}}=7^{\frac{9}{3}}=7^{3}$$ Odpowiedź: B. Zadanie 4. Oblicz: $(\sqrt{2})^{2},~~(\sqrt{17})^{4},~~(\sqrt{15})^{2},~~(\sqrt[3]{4})^{3},~~(\sqrt{18})^{4},~~(\sqrt{9})^{5},~~(\sqrt[5]{32})^{3},~~(\sqrt[4]{16})^{5},~~(\sqrt{16})^{5}$ 1. $$(\sqrt{2})^{2} = 2$$2. $$(\sqrt{17})^{4} = ({17}^\frac{1}{2})^{4}=17^{\frac{1}{2}\cdot4}= 17^{2} = 289$$ 3. $$(\sqrt{15})^{2} = 15$$ 4. $$(\sqrt[3]{4})^{3} = 4$$ 5. $$(\sqrt{18})^{4}=({18}^\frac{1}{2})^{4}= 18^{\frac{4}{2}} = 18^{2} = 324$$ 6. $$(\sqrt{9})^{5} = \sqrt{9\cdot9\cdot9\cdot9\cdot9}=\sqrt{9\cdot9}\cdot\sqrt{9\cdot9}\cdot\sqrt{9} = 9\cdot9\cdot\sqrt{9} = 81\sqrt{9}$$ 7. $$(\sqrt[5]{32})^{3} = (\sqrt[5]{2^{5}})^{3} = 2^{3} = 8$$ 8. $$(\sqrt[4]{16})^{5} = (\sqrt[4]{2^{4}})^{5} = 2^{5} = 32$$ 9. $$(\sqrt{16})^{5} = 4^{5} = 1024$$ Katalog ściąg i opracowań z zakresu Potęgi i pierwiastki - Matematyka. Wiosna Ludów 1848-1849 w Europie i na ziemiach polskich Odpowiedzi Enscapee odpowiedział(a) o 20:44 200 0 0 EKSPERTGoszilda odpowiedział(a) o 20:45 (10√2)² = 100 * 2 = 200 0 0 Uważasz, że znasz lepszą odpowiedź? lub
Potęgi i pierwiastki. Ta playlista dotyczy potęg i pierwiastków. Dowiesz się z niej, czym są pierwiastki kwadratowe, sześcienne i wyższych stopni oraz nauczysz się jak skutecznie obliczać wyrażenia zawierające pierwiastki. Poznasz związek, jaki zachodzi pomiędzy potęgami i pierwiastkami oraz dowiesz się, czym jest potęga o
Spis treści1 Historia2 Definicja3 Przykłady i własności4 Pierwiastek zespolony5 Typografia6 Zobacz też7 PrzypisyPierwiastkowanie – w matematyce operacja odwrotna względem potęgowania . Ponieważ często istnieje wiele liczb (tzw. pierwiastki algebraiczne), które podniesione do pewnej potęgi dają daną liczbę, to pierwiastkowanie nie może być w ogólności nazwane działaniem ; często można jednak ograniczyć dziedzinę działania potęgowania tak, by możliwe było jego odwrócenie (dając tzw. pierwiastki arytmetyczne).Pierwiastki są szczególnie istotne w teorii szeregów , gdzie kryterium Cauchy'ego (pierwiastkowe) służy wyznaczaniu promienia zbieżności szeregu potęgowego . Pierwiastki można też zdefiniować dla liczb zespolonych ; warto nadmienić, iż pierwiastki zespolone z jedynki odgrywają istotną rolę w matematyce wyższej. Duża część teorii Galois skupia się na wskazaniu, które z liczb algebraicznych można przedstawić za pomocą pierwiastków, co prowadzi do znanego twierdzenia Abela-Ruffiniego mówiącego, iż ogólny wielomian stopnia piątego bądź wyższego nie może być rozwiązany za pomocą tzw. pierwiastników , tzn. wyrażeń połączonych działaniami dodawania, odejmowania, mnożenia i dzielenia oraz pierwiastków. HistoriaPoczątki symbolu pierwiastka √ są dość niejasne. Niektóre źródła[] podają, że symbol został wprowadzony przez Arabów , a po raz pierwszy został on użyty przez Abū al-Hasana ibn Alīego al-Qalasādīego (1421-1486) i został wyprowadzony z arabskiej litery ج, pierwszej litery słowa Jadhir (gdzie „dh” oznacza międzyzębową dźwięczną spółgłoskę szczelinową , odpowiednik angielskiego „th” w wyrazie the) oznaczającego „korzeń”.Wielu, w tym Leonhard Euler [1] wierzy, że pochodzi on od litery r, pierwszej litery łacińskiego słowa radix, które oznacza to samo działanie matematyczne . Symbolu użyto po raz pierwszy w druku bez vinculum (poziomej kreski nad liczbami wewnątrz symbolu pierwiastka) w 1525 roku w Die Coss autorstwa niemieckiego matematyka Christoffa surd pochodzi z czasów al-Khwārizmīego (ok. 825), który liczby wymierne i niewymierne nazywał odpowiednio „słyszalnymi” i „niesłyszalnymi”. W związku z tym arabskie „assam” (głuchy, głupi) oznaczające liczbę niewymierną było później tłumaczone na łacinę jako surdus („głuchoniemy”). Gerard z Cremony (ok. 1150), Fibonacci (1202), a potem Robert Recorde (1551) używali tego terminu w odniesieniu do nierozwiązanych pierwiastków niewymiernych[2]. DefinicjaNiech dana będzie dodatnia liczba całkowita n nazywana stopniem. Pierwiastkiem z liczby x stopnia n nazywa się taką liczbę r, która podniesiona do n-tej potęgi jest równa x; innymi słowy jest to dowolna liczba r spełniająca równośćrn = w powyższym sensie nazywa się często pierwiastkiem algebraicznym; każda dodatnia liczba rzeczywista ma jeden dodatni pierwiastek n-tego stopnia, nazywany często pierwiastkiem arytmetycznym. Pierwiastkiem n-tego stopnia z zera jest 0. W ten sposób każdej nieujemnej liczbie rzeczywistej przypisana zostaje nieujemna liczba rzeczywista, co umożliwia określenie działania pierwiastkowania w zbiorze nieujemnych liczb nieparzystych n każda ujemna liczba ma ujemny pierwiastek rzeczywisty n-tego stopnia (również nazywany pierwiastkiem arytmetycznym), choć nie jest to prawdą dla parzystych stopnia 2 nazywa się pierwiastkiem kwadratowym , zaś stopnia 3 – pierwiastkiem sześciennym ; pierwiastki wyższych stopni identyfikuje się wyłącznie liczbowo, np. „pierwiastek czwartego stopnia”.Pierwiastki zapisuje się zwykle za pomocą symbolu pierwiastkom stopnia drugiego, trzeciego, czwartego itd. z liczby x odpowiadają kolejno symbole itp. (zwyczajowo pomija się w zapisie stopień pierwiastka kwadratowego). Notacja ta nie budzi zastrzeżeń w stosunku do pierwiastków arytmetycznych, nie mniej może prowadzić do sprzeczności w przypadku pierwiastków algebraicznych, dla których symbole te nie są jednoznaczne. Przykłady i własnościLiczba 2 jest pierwiastkiem czwartego stopnia z 16, gdyż 24 = 16. Jest to jedyna dodatnia liczba rzeczywista o tej własności i to właśnie ona nazywana jest pierwiastkiem arytmetycznym; innym pierwiastkiem rzeczywistym tej liczby jest − 2; istnieją także dwa nierzeczywiste pierwiastki tej liczby, które wraz z 2 oraz − 2 są pierwiastkami algebraicznymi 4-tego stopnia z pierwiastka z liczby ujemnej może być liczba − 2, która ma rzeczywisty pierwiastek piątego stopnia, lecz nie ma żadnych rzeczywistych pierwiastków szóstego liczb ma niewymierne pierwiastki, przykładowoMimo wszystko wszystkie pierwiastki liczb całkowitych, a nawet liczb algebraicznych , są x,y są nieujemnymi liczbami rzeczywistymi, zaś n,m są dodatnimi liczbami całkowitymi, to:W analizie matematycznej pierwiastki traktuje się jako przypadki szczególne potęgowania o wykładniku będącym ułamkiem , prawdziwe są również następujące równości:Ze wzorów skróconego mnożenia wynikają wzory:Pierwiastek można również wyrazić w postaci szeregu :o ile | x | < 1. Wyrażenie to można wyprowadzić z szeregu dwumiennego. Pierwiastek zespolonyDla dodatniej liczby całkowitej n pierwiastkiem (algebraicznym) stopnia n z liczby zespolonej x nazywa się dowolną liczbę r spełniającą równośćrn = niezerowa liczba zespolona (a więc i rzeczywista) x ma n różnych zespolonych pierwiastków n-tego stopnia; szczególnie istotne są szeroko stosowane w matematyce pierwiastki z z liczby zespolonej z można wyznaczyć korzystając ze wzoru de Moivre'a:,dla (powyższy symbol pierwiastka oznacza pierwiastek arytmetyczny).Przykładowo dla liczby z = − 4 jest | z | = 4, a ponadto , a więc w postaci biegunowej ma ona postać z = 4(cosπ + isinπ).Pierwiastkami drugiego stopnia z z są: TypografiaNiżej przedstawiono kody znaków symboli pierwiastka:ZnakNazwa polska[3] Unikod Nazwa unikodowa ASCII URL HTML (inne)√pierwiastek kwadratowyU+221ASQUARE ROOT√%E2%88%9A√∛pierwiastek sześciennyU+221BCUBE ROOT∛%E2%88%9B∜pierwiastek czwartego stopniaU+221CFOURTH ROOT∜%E2%88%9C‾kreska wiążąca górnaU+203EOVERLINE‾kreska wiążąca górna dostawnaU+0305COMBINING OVERLINEW LaTeX-u : Zobacz też algorytm obliczania pierwiastka n-tego stopnia pierwiastek dwunastego stopnia z dwóchsuperpierwiastekPrzypisy↑ Leonhard Euler: Institutiones calculi differentialis. 1755. ( łac. )↑ Earliest Known Uses of Some of the Words of Mathematics . [dostęp 2008-11-30].↑ Nazwy polskie zaczerpnięte lub utworzone na podstawie Robert Bringhurst, Elementarz stylu w typografii (Załącznik A), Design Plus, Kraków 2007.
Rozwiązanie zadania z matematyki: Uprość wyrażenie √{7-4√{3}}., Uprość wyrażenie, 9674600 Największy internetowy zbiór zadań z matematyki Baza zawiera: 19752 zadania, 1833 zestawy, 35 poradników Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Oblicz \(\displaystyle{ (2- \sqrt{3}) ^{ \sqrt{2} } (2+ \sqrt{3}) ^{ \sqrt{2} }}\) Chcę żeby ktoś wytłumaczył mi to zadanie(nie rozwiązał :] ). Szukałem go w internecie ale nie udało mi się znaleźć. Konkretnie moim problemem jest ta potęga, nie mam pojęcia jak to zacząć. Pozdrawiam Ostatnio zmieniony 2 mar 2013, o 20:59 przez Jan Kraszewski, łącznie zmieniany 1 raz. Powód: Temat umieszczony w złym dziale. Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 21:03 Dziękuję za szybką odp. Chodziło mi jednak o to jak wyliczyć liczbę np. \(\displaystyle{ 3 ^{ \sqrt{3} }}\)-- 2 mar 2013, o 21:06 --Jan Kraszewski pisze:\(\displaystyle{ a^c\cdot b^c=(a\cdot b)^c}\) JK Z tego co pan napisał wnioskuję, że to \(\displaystyle{ (2- \sqrt{3}) ^{ \sqrt{2} } (2+ \sqrt{3}) ^{ \sqrt{2} }}\) można zapisać jako \(\displaystyle{ ((2- \sqrt{3})(2+ \sqrt{3})) ^{ \sqrt{2} }}\). yorgin Użytkownik Posty: 12762 Rejestracja: 14 paź 2006, o 12:09 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 17 razy Pomógł: 3440 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: yorgin » 2 mar 2013, o 21:16 Potęgę \(\displaystyle{ 3^\sqrt{3}}\) definiuje się jako granicę \(\displaystyle{ \lim\limits_{n\to\infty}3^{a_n}}\) gdzie \(\displaystyle{ a_n}\) jest ciągiem liczb wymiernych zbieżnym do \(\displaystyle{ \sqrt{3}}\). Ta wartość nie jest wyliczalna "ręcznie". Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 21:26 W takim razie patrząc na zadanie które podałem wystarczy, że wymnożę nawiasy i zostawię tą potęgę poza nawiasem, tak? bartek118 Użytkownik Posty: 5974 Rejestracja: 28 lut 2010, o 19:45 Płeć: Mężczyzna Lokalizacja: Toruń Podziękował: 15 razy Pomógł: 1251 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: bartek118 » 2 mar 2013, o 21:41 piasek101 pisze:tak Nie. Trzeba jeszcze wykonać działania: \(\displaystyle{ ((2- \sqrt{3})(2+ \sqrt{3})) ^{ \sqrt{2} } = (4-3) ^{ \sqrt{2} } = 1^{ \sqrt{2} } = 1}\) Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 23:23 piasek101 pisze:gotowizna nie jest moją specjalnością Jakbyś przeczytał mój temat to byś wiedział, że nie proszę o gotowca... Uczę się do matury dodatkowo robiąc zadania. To nie jest jakieś zadanie domowe, którego nie chce mi się zrobić bo lepiej wrzucić na neta. Dziękuje, za pomoc normalnym ludziom. piasek101 Użytkownik Posty: 23388 Rejestracja: 8 kwie 2008, o 22:04 Płeć: Mężczyzna Lokalizacja: piaski Podziękował: 1 raz Pomógł: 3230 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: piasek101 » 3 mar 2013, o 17:55 Mavcus pisze:piasek101 pisze:gotowizna nie jest moją specjalnością Jakbyś przeczytał mój temat to byś wiedział, że nie proszę o gotowca... No to właśnie go nie napisałem. I masz pretensje ? Zadanie: oblicz pierwistek z 7 do 4 potęgi, pierwiastek z 2 do Rozwiązanie: 7 2 49 2 3 8 4 3 64 12 2 144 pierwiastek z 1 000 000 1 000 3 3 27 Zaliczaj.pl Jesteś niezalogowany Zaloguj się lub zarejestruj nowe konto.
Podstawa programowa z matematyki dla klasy 8 I. Potęgi i pierwiastki Uczeń: • zapisuje iloczyn jednakowych czynników w postaci potęgi o wykładniku całkowitym dodatnim • oblicza wartości potęg liczb wymiernych o wykładnikach naturalnych • oblicza wartości wyrażeń arytmetycznych zawierających potęgi o wykładniku

szkoła średnia. Dział Potęgi i pierwiastki arytmetyczne. Przypomnijmy pewne własności działań na potęgach: dla oraz niezerowych liczb całkowitych . Przypomnijmy również, że pierwiastkiem arytmetycznym stopnia drugiego (kwadratowym) z nieujemnej liczby a nazywamy taką nieujemna liczbę b, dla której zachodzi równość

Potęgi i pierwiastki. Kalkulator oblicza potęgi i pierwiastki drugiego, trzeciego i n -tego stopnia. Na każdej stronie jest pokazany wykres i odpowiednie wzory.

Włączanie czynnika pod znak pierwiastka. I sposób omówię dla 5 2–√. Liczbę stojącą przed znakiem pierwiastka „5” wpisujesz pod znak pierwiastka podnosząc ją jednocześnie do potęgi „2”, gdzie potęga „2” jest stopniem pierwiastka. Następnie mnożysz jeszcze wyrażenie przez liczbę, która stała pod pierwiastkiem

Oblicz według wzoru a) pierwiastek z 5 do 4 b)(pierwiastek z 8) do 4 c)pierwiastek z 9 do 4 d)( pierwiastek z 2) do 6 e)(pierwiastek z 3 do 6 f)(pierwiastek z 5) do 6 g) pierwiastek do stopnia 3 z 2 do 6 h) pierwiastek do stopnia 3 z 7 do 6 i)Pierwiastek do stopnia 3 z 6 do 6 j)( pierwiastek do stopnia 3 z 3 ) do 6 k)(pierwiastek zdo stopnia 3 Potęgi i pierwiastki Test. autor: Aleksandrakrusz1. Klasa 7 Matematyka. Rozwiązywanie równań Połącz w pary. autor: Patrycjaborowsk. Klasa 7 Klasa 8 Matematyka. Mnożenie sum algebraicznych Połącz w pary. autor: Kkowalska169.
Wartość wyrażenia 6 do potęgi 8 podzielić przez 2 do potęgi 4 jest równa? Poprawna odpowiedź to D. Wyjaśnienie: Mamy wyrażenie: Skorzystamy z walsnosci potęg: Możemy zatem licznik rozpisać jako: Teraz możemy skrócić dwójki, pamiętajac, że odejmujemy wartości potęg: Zatem poprawna odpowiedź to D.
Kalkulator pierwiastków to poręczne narzędzie online, które pozwala użytkownikom z łatwością obliczać pierwiastki dowolnego stopnia. Niezależnie od tego, czy potrzebujesz znaleźć pierwiastek kwadratowy (2. stopnia), pierwiastek sześcienny (3. stopnia), czy jakikolwiek inny pierwiastek, ten kalkulator jest tutaj, aby Ci pomóc Nadesłane rozwiązania ( 1 ) Rozwiązanie 1 dodane przez marcia6665 , 22.09.2012 14:57. = (4 do potęgi 2)do potęgi 2 * 1/8 do potęgi drugiej = 16 do potęgi drugiej * 1/8 do potęgi drugiej=. = (16*1/8)do potęgi drugiej = 2 do potęgi 2. Dodaj komentarz. .